机器人系统的远程操作用于精确而精致的物体抓握需要高保真的触觉反馈,以获取有关抓握的全面实时信息。在这种情况下,最常见的方法是使用动力学反馈。但是,单个接触点信息不足以检测软件的动态变化形状。本文提出了一个新型的远程触发系统,该系统可为用户的手提供动感和皮肤刺激,以通过灵敏地操纵可变形物体(即移液器)来实现准确的液体分配。实验结果表明,为用户提供多模式触觉反馈的建议方法大大提高了用远程移液器的剂量质量。与纯视觉反馈相比,当用户用多模式触觉界面与视觉反馈混合使用多模式触觉接口时,相对给药误差减少了66 \%,任务执行时间减少了18 \%。在CoVID-19,化学实验,有机材料和伸缩性的抗体测试期间,可以在精致的给药程序中实施该提出的技术。
translated by 谷歌翻译
在各种地形上进行运动的能力对于腿部机器人至关重要。但是,机器人必须更好地了解其在不同地形上进行强大运动的表面。动物和人类能够在脚上的触觉感觉的帮助下识别表面。虽然,腿部机器人的脚触觉感觉并没有得到太多探索。本文介绍了针对触觉脚(TSF)的新型四足机器人Dogtouch的研究。 TSF允许使用触觉传感器和卷积神经网络(CNN)识别不同的表面纹理。实验结果表明,我们训练有素的基于CNN的模型的足够验证精度为74.37 \%,对线模式的90 \%\%的识别最高。将来,我们计划通过呈现各种模式深度的表面样本并应用高级深度学习和浅层学习模型来改善预测模型。此外,我们提出了一种新颖的方法,用于导航四倍和腿部机器人。我们可以安排触觉铺路纹理表面(类似于盲人或视障人士)。因此,只需识别将指示直路,左或右转弯,行人穿越,道路等的特定触觉图案,就可以在未知环境中进行运动,无论光线如何,都可以允许强大的导航。配备了视觉和触觉感知系统的未来四足机器人将能够在非结构化的室内和室外环境中安全,智能地导航和交互。
translated by 谷歌翻译
现代行业仍依靠手动制造业务,安全的人机互动现在是非常兴趣的。速度和分离监测(SSM)允许通过在机器人操作期间维持保护分离距离来实现紧密和高效的协作情景。本文侧重于一种新的方法来加强对机器人手段的触觉反馈来加强SSM安全要求。基于机器人和操作员的人的反应时间和瞬时速度,触觉刺激为机器人提供了危险运动和接近机器人的早期警告。进行初步实验以确定参与者在具有受控条件的协作环境中暴露于触觉刺激时的反应时间。在第二次实验中,我们将我们的方法评估为人工和Cobot进行协同行星齿轮组件的研究案例。结果表明,与仅在视觉反馈的操作员相比,施加的方法增加了机器人的末端效应器之间的平均最小距离,手中的末端效应器与44%增加了44%。此外,没有触觉支持的参与者已经失败了几次以维持保护性分离距离。
translated by 谷歌翻译
In the last years, the number of IoT devices deployed has suffered an undoubted explosion, reaching the scale of billions. However, some new cybersecurity issues have appeared together with this development. Some of these issues are the deployment of unauthorized devices, malicious code modification, malware deployment, or vulnerability exploitation. This fact has motivated the requirement for new device identification mechanisms based on behavior monitoring. Besides, these solutions have recently leveraged Machine and Deep Learning techniques due to the advances in this field and the increase in processing capabilities. In contrast, attackers do not stay stalled and have developed adversarial attacks focused on context modification and ML/DL evaluation evasion applied to IoT device identification solutions. This work explores the performance of hardware behavior-based individual device identification, how it is affected by possible context- and ML/DL-focused attacks, and how its resilience can be improved using defense techniques. In this sense, it proposes an LSTM-CNN architecture based on hardware performance behavior for individual device identification. Then, previous techniques have been compared with the proposed architecture using a hardware performance dataset collected from 45 Raspberry Pi devices running identical software. The LSTM-CNN improves previous solutions achieving a +0.96 average F1-Score and 0.8 minimum TPR for all devices. Afterward, context- and ML/DL-focused adversarial attacks were applied against the previous model to test its robustness. A temperature-based context attack was not able to disrupt the identification. However, some ML/DL state-of-the-art evasion attacks were successful. Finally, adversarial training and model distillation defense techniques are selected to improve the model resilience to evasion attacks, without degrading its performance.
translated by 谷歌翻译
Cybercriminals are moving towards zero-day attacks affecting resource-constrained devices such as single-board computers (SBC). Assuming that perfect security is unrealistic, Moving Target Defense (MTD) is a promising approach to mitigate attacks by dynamically altering target attack surfaces. Still, selecting suitable MTD techniques for zero-day attacks is an open challenge. Reinforcement Learning (RL) could be an effective approach to optimize the MTD selection through trial and error, but the literature fails when i) evaluating the performance of RL and MTD solutions in real-world scenarios, ii) studying whether behavioral fingerprinting is suitable for representing SBC's states, and iii) calculating the consumption of resources in SBC. To improve these limitations, the work at hand proposes an online RL-based framework to learn the correct MTD mechanisms mitigating heterogeneous zero-day attacks in SBC. The framework considers behavioral fingerprinting to represent SBCs' states and RL to learn MTD techniques that mitigate each malicious state. It has been deployed on a real IoT crowdsensing scenario with a Raspberry Pi acting as a spectrum sensor. More in detail, the Raspberry Pi has been infected with different samples of command and control malware, rootkits, and ransomware to later select between four existing MTD techniques. A set of experiments demonstrated the suitability of the framework to learn proper MTD techniques mitigating all attacks (except a harmfulness rootkit) while consuming <1 MB of storage and utilizing <55% CPU and <80% RAM.
translated by 谷歌翻译
Uncertainty quantification is crucial to inverse problems, as it could provide decision-makers with valuable information about the inversion results. For example, seismic inversion is a notoriously ill-posed inverse problem due to the band-limited and noisy nature of seismic data. It is therefore of paramount importance to quantify the uncertainties associated to the inversion process to ease the subsequent interpretation and decision making processes. Within this framework of reference, sampling from a target posterior provides a fundamental approach to quantifying the uncertainty in seismic inversion. However, selecting appropriate prior information in a probabilistic inversion is crucial, yet non-trivial, as it influences the ability of a sampling-based inference in providing geological realism in the posterior samples. To overcome such limitations, we present a regularized variational inference framework that performs posterior inference by implicitly regularizing the Kullback-Leibler divergence loss with a CNN-based denoiser by means of the Plug-and-Play methods. We call this new algorithm Plug-and-Play Stein Variational Gradient Descent (PnP-SVGD) and demonstrate its ability in producing high-resolution, trustworthy samples representative of the subsurface structures, which we argue could be used for post-inference tasks such as reservoir modelling and history matching. To validate the proposed method, numerical tests are performed on both synthetic and field post-stack seismic data.
translated by 谷歌翻译
We present a Machine Learning (ML) study case to illustrate the challenges of clinical translation for a real-time AI-empowered echocardiography system with data of ICU patients in LMICs. Such ML case study includes data preparation, curation and labelling from 2D Ultrasound videos of 31 ICU patients in LMICs and model selection, validation and deployment of three thinner neural networks to classify apical four-chamber view. Results of the ML heuristics showed the promising implementation, validation and application of thinner networks to classify 4CV with limited datasets. We conclude this work mentioning the need for (a) datasets to improve diversity of demographics, diseases, and (b) the need of further investigations of thinner models to be run and implemented in low-cost hardware to be clinically translated in the ICU in LMICs. The code and other resources to reproduce this work are available at https://github.com/vital-ultrasound/ai-assisted-echocardiography-for-low-resource-countries.
translated by 谷歌翻译
$ $With recent advances in CNNs, exceptional improvements have been made in semantic segmentation of high resolution images in terms of accuracy and latency. However, challenges still remain in detecting objects in crowded scenes, large scale variations, partial occlusion, and distortions, while still maintaining mobility and latency. We introduce a fast and efficient convolutional neural network, ASBU-Net, for semantic segmentation of high resolution images that addresses these problems and uses no novelty layers for ease of quantization and embedded hardware support. ASBU-Net is based on a new feature extraction module, atrous space bender layer (ASBL), which is efficient in terms of computation and memory. The ASB layers form a building block that is used to make ASBNet. Since this network does not use any special layers it can be easily implemented, quantized and deployed on FPGAs and other hardware with limited memory. We present experiments on resource and accuracy trade-offs and show strong performance compared to other popular models.
translated by 谷歌翻译
Deep learning models have shown promising results in recognizing depressive states using video-based facial expressions. While successful models typically leverage using 3D-CNNs or video distillation techniques, the different use of pretraining, data augmentation, preprocessing, and optimization techniques across experiments makes it difficult to make fair architectural comparisons. We propose instead to enhance two simple models based on ResNet-50 that use only static spatial information by using two specific face alignment methods and improved data augmentation, optimization, and scheduling techniques. Our extensive experiments on benchmark datasets obtain similar results to sophisticated spatio-temporal models for single streams, while the score-level fusion of two different streams outperforms state-of-the-art methods. Our findings suggest that specific modifications in the preprocessing and training process result in noticeable differences in the performance of the models and could hide the actual originally attributed to the use of different neural network architectures.
translated by 谷歌翻译
Intensive Care in-hospital mortality prediction has various clinical applications. Neural prediction models, especially when capitalising on clinical notes, have been put forward as improvement on currently existing models. However, to be acceptable these models should be performant and transparent. This work studies different attention mechanisms for clinical neural prediction models in terms of their discrimination and calibration. Specifically, we investigate sparse attention as an alternative to dense attention weights in the task of in-hospital mortality prediction from clinical notes. We evaluate the attention mechanisms based on: i) local self-attention over words in a sentence, and ii) global self-attention with a transformer architecture across sentences. We demonstrate that the sparse mechanism approach outperforms the dense one for the local self-attention in terms of predictive performance with a publicly available dataset, and puts higher attention to prespecified relevant directive words. The performance at the sentence level, however, deteriorates as sentences including the influential directive words tend to be dropped all together.
translated by 谷歌翻译